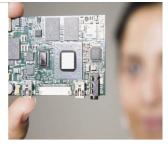
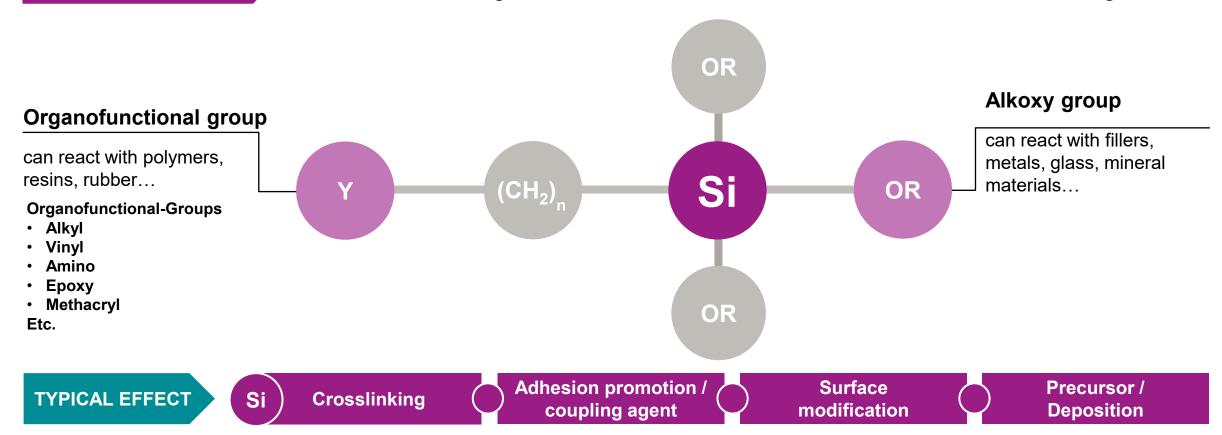

Dynasylan® Silanes for PE crosslinking

August 2025

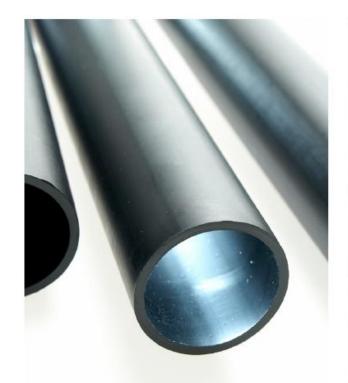


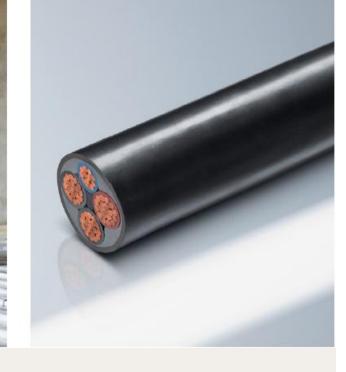
SILANES #ENABLE



Silanes Connect the Inorganic and Organic World

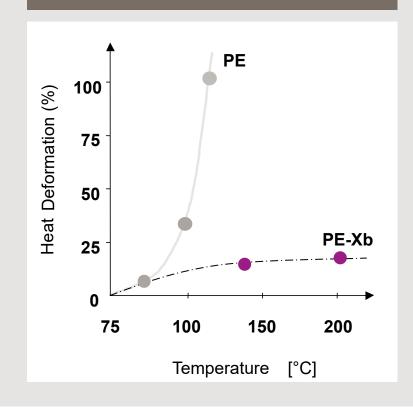
TYPICAL STRUCTURE


Most commercial organofunctional silanes feature the same molecular building blocks



Dynasylan® Silfin solutions for silane crosslinking

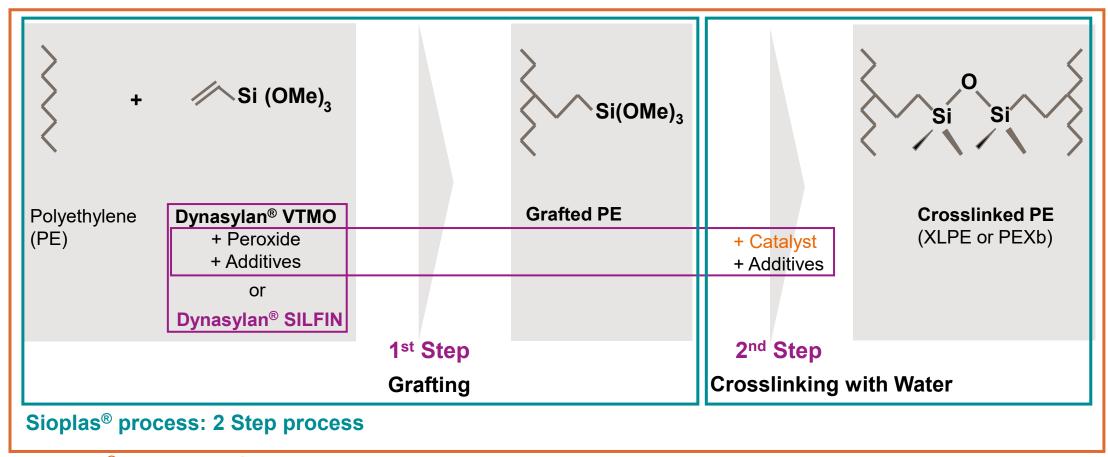
PE crosslinking technologies



- PE-Xa crosslinking with peroxide(s)
- PE-Xb crosslinking with silane ("moisture cure" method)
- PE-Xc crosslinking via electron beam process

Silane-based Crosslinking Enables the Use of PE in Cable Applications

Significantly Increased Heat-Form-Stability



PE (non-crosslinked polyethylene)

PE-Xb (silane crosslinked polyethylene)

Vinyl-Silanes Act as Crosslinkers for PE

Monosil® process: 1 Step process

Dynasylan® SILFIN Series to Boost the Performance of your PE-X Cables

Dynasylan® SILFIN series – Product Range

Monosil® process

SILFIN 06	Excellent x-linking
SILFIN 75	Can be delivered in IBCs
SILFIN 63	High speed x-linking at ambient temperature
SILFIN 50	Suitable for drinking water pipes

Sioplas® process

SILFIN 13	One product convenience
SILFIN 25	Suitable for drinking water pipes
SILFIN 301	Solution for x-linking HFFR-compounds

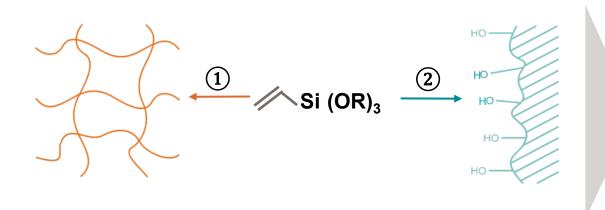
Dynasylan® SILFIN series – At a Glance

Attractive product profile

- Multicomponent formulations based on Vinyl-functional Silane.
- Product series with different reactivities.
- Constant & reliable quality of physical blends.

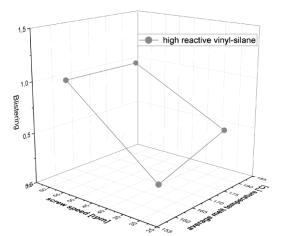
Easy to use

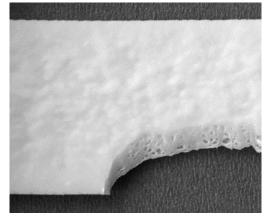
- Ready to use vinyl silane mixtures.
- Products for Sioplas[®] & Monosil[®] process.
- Solutions for high throughput rates.


Benefits

- Excellent grafting & crosslinking.
- One product convenience no mixing by customer needed.
- Unique solutions, e.g. for high-filled HFFR compounds.

Vinyl- and Alkoxy-Reactivity Need to be Balanced in HFFR Compounds


Challenge of X-linking of Highly Filled HFFR Compounds



Competitive reactions:

- 1 Vinyl-reactivity via peroxides towards PE chains
- 2 Alkoxy reactivity towards OH-rich HFFR surface

High Alkoxy Reactivity Leads to a Sensitive Process

Study on Crosslinking with high reactive vinyl-silanes

- Melt temperature increased blistering
- Screw speed increases blistering
- → Small processing window

Vinyl-silane with Optimized Selectivity is Preferred for HFFR Compounds

Comparison of Vinyl-silane Selectivity in Crosslinking of Highly Filled HFFR Compounds

Vinylsilane with optimized selectivity shows a smooth surface.

- Higher screw speed increased blistering only slightly
- Higher melt temperature increased blistering only slightly

Broader processing window is possible

Dynasylan® SILFIN 301 with optimized vinyl-silane selectivity for crosslinking of HFFR compounds.

Dynasylan[®] SILFIN 301 Boosts the Performance of Highly Filled HFFR Compounds

Dynasylan® SILFIN 301 excellent Solution for HFFR Compounds

Typical mechanical properties

Hot-Set [%] (after curing in waterbath @ 80°C for min. 8h)	< 80%
Tensile strength [MPa] (after curing in waterbath @ 80°C for min. 8h)	> 11 MPa
Elongation at break [%]	> 150%

Dynasylan® SILFIN 301 – At a Glance

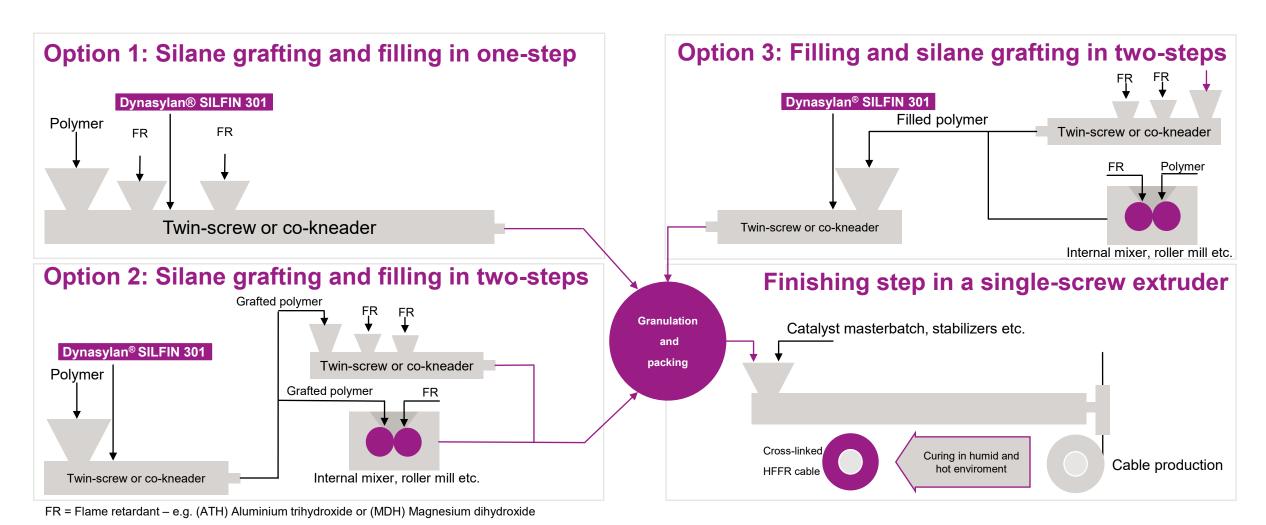
Attractive product profile

- Multicomponent formulation based on Dynasylan[®] VTEO.
- Product series with optimized selectivity towards filler surface.
- Constant & reliable quality of physical silane & peroxide blend.

Easy to use

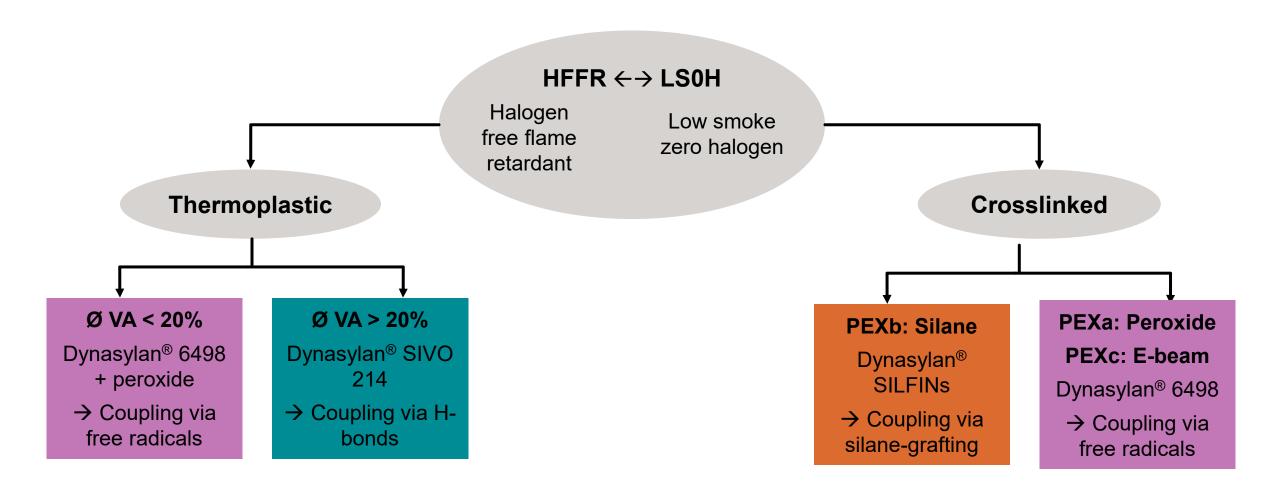
- Ready to use vinyl silane mixtures.
- Product for Sioplas[®] process.
- Solution for high throughput rates.

- Excellent grafting & crosslinking
- Smooth surface of crosslinked HFFR compounds
- No blistering.
- Excellent mechanical properties.


Dynasylan® SILFIN 301 – Formulation examples

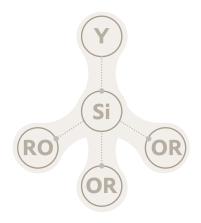
	Polar HFFR-compound	Non-Polar HFFR-compound
EVA (28% vinyl acetate) (MFR _(190°C, 2.16kg) = 3,0 g/10min)	75 phr	-
PE-LLD (MFR _{190°C, 2.16kg)} = 1,0 g/10min)	25 phr	-
PE-M ₁ (MFR _(190°C, 2.16kg) = 1,0 g/10min)	-	65 phr
PE-M ₂ (MFR _(190°C, 2.16kg) = 30 g/10min)	-	35 phr
Flame retardant (ATH or MDH)	160-180 phr	
Dynasylan [®] SILFIN 301	1.5-2.0 phr	

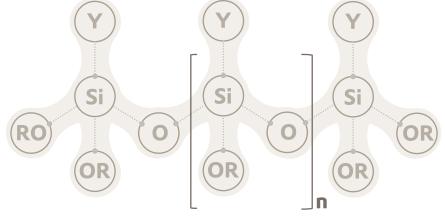
	Polar HFFR-compound	Non-Polar HFFR-compound
Silane grafted polymer (PEg)	97.5%	97.5%
Catalyst-MB (e.g. PE-LD, PE-LLD, EVA containing 0.25% Dibutyl-tin-di-laurate)	2.5%	2.5%
Hot-Set in [%] (tape with 1 mm thickness, after curing in waterbath @80°C for 6-8h)	< 80	0%
Tensile strength in [MPa] ((tape with 1 mm thickness, after curing in waterbath @80°C for 6-8h)	> 11	MPa
Elongation at break in [%]	>15	0%


Dynasylan[®] SILFIN 301 – Reliable solution for silane x-linking HFFR compounds

HFFR Compounds for Flameretardant Cable Insulations

Choosing the Suitable Silane Technology





Dynasylan® oligomers outperform monomers

Dynasylan® Monomer

Dynasylan® Oligomer

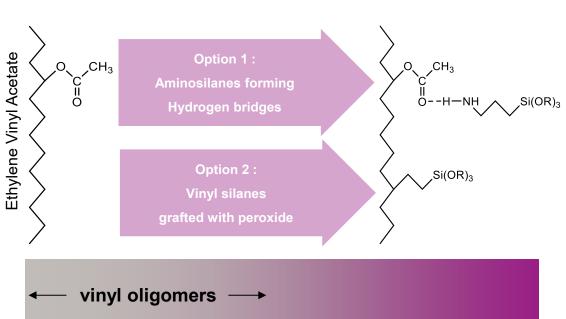
Dynasylan® oligomers outperform monomers

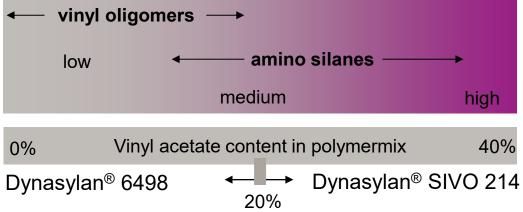
- Higher effectivity and reduced dosage amount
- Reduced volatile by-products
- Enhanced processing
- Safer handling
- Higher boiling and flash point

Dynasylan® oligomers outperform monomers

Dynasylan®	VTMO	VTEO	6490	6498	6598
Viscosity (20°C) [mPas]	0.8	0.7	6.0	3.6	4.6
Flash point [°C]	22	38	> 75	> 87	> 70
Boiling point [°C]	123	158	> 220	240	255
Vinylgroups [%Mass]	18	14	24	21	10
Equimolar exchange factor	0.56	0.71	0.42	0.48	1
Released hydrolysis alcohol [g hydrolysis alcohol/kg Dynasylan®]	650 (Methanol)	730 (Ethanol)	400 (Methanol)	490 (Ethanol)	460 (Ethanol)

Dynasylan® oligomers outperform monomers


- Higher effectivity and reduced dosage amount
- Reduced volatile by-products
- Higher boiling and flash point
- Safer handling, transport and storage
- Enhanced processing no product loss at higher processing temperatures



HFFR compounds for flameretardant cable insulations – choosing the suitable functionality!

Halogen-Free Flame Retardants compound formulation		
100 phr Polymer (PE, PE/EVA, PP)		
150 -200 phr	Filler (ATH, MDH)	
1,5 phr	Silane (vinyl-/ amino-)	
0,01 – 0,03 phr	DCUP (in the case of vinyl oligomers)	

Dynasylan® on the Internet

Information, addresses, and contacts

Our website offers a well-structured platform with information on products, methods, and chemical processes. A solution-finder provides informative brochures and presentations for downloading, in addition to product information and safety data sheets.

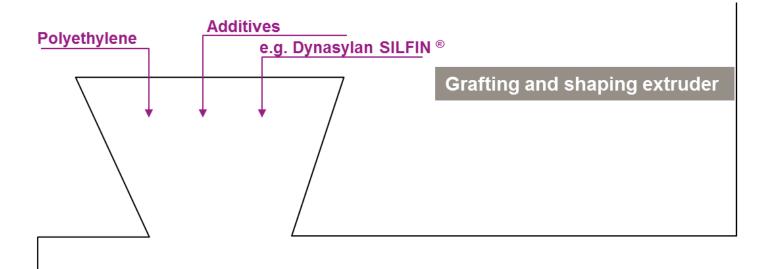
The database containing details of Evonik contacts and dealers worldwide gives convenient access to important contact data at any time.

www.evonik.com ask-se@evonik.com

EVONIK Operations GmbH

Rodenbacher Chaussee 4 63457 Hanau Germany

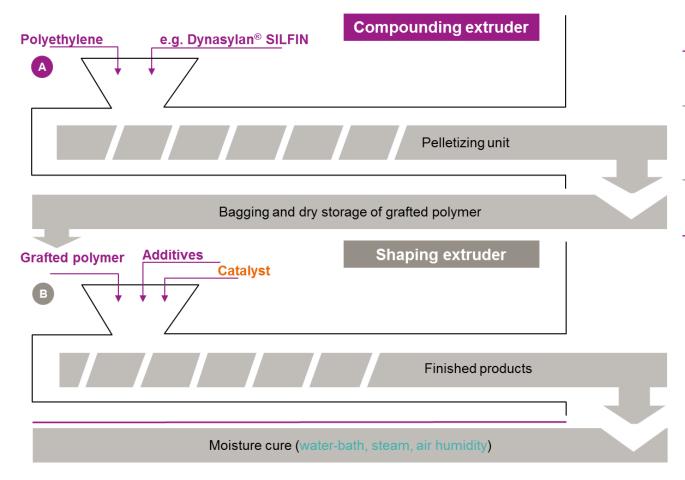
https://www.evonik.com/en/company/businesslines/se.html



This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability for their purposes. In no event shall Evonik assume liability for damages or losses of any kind or nature that result from the use of or reliance upon this information and recommendations. EVONIK EXPRESSLY DISCLAIMS ANY REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION AND RECOMMENDATIONS PROVIDED.

Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik reserves the right to make any changes to the information and /or recommendations at any time, without prior or subsequent notice.

Silane crosslinking technology – the Monosil® process


Dynasylan [®]	Characteristics
SILFIN 06	Excellent x-linking
SILFIN 50	Drinking-water-pipes
SILFIN 75	Can be delivered in IBC
SILFIN 63	High speed X-linking (ambient curing)

Finished products

Moisture cure (water-bath, steam, air humidity)

Silane crosslinking technology – two-step process (Sioplas®)

Dynasylan®	Characteristics
SILFIN 13	One product convenience
SILFIN 13	•
	Higher throughput rates
SILFIN 25	Drinking-water-pipes
SILFIN 301	Effective for HFFR compounds

